104 research outputs found

    Effect of inbreeding on intellectual disability revisited by trio sequencing

    Get PDF
    In outbred Western populations, most individuals with intellectual disability (ID) are sporadic cases, dominant de novo mutations (DNM) are frequent, and autosomal recessive ID (ARID) is very rare. Because of the high rate of parental consanguinity, which raises the risk for ARID and other recessive disorders, the prevalence of ID is significantly higher in near- and middle-east countries. Indeed, homozygosity mapping and sequencing in consanguineous families have already identified a plethora of ARID genes, but because of the design of these studies, DNMs could not be systematically assessed, and the proportion of cases that are potentially preventable by avoiding consanguineous marriages or through carrier testing is hitherto unknown. This prompted us to perform whole-exome sequencing in 100 sporadic ID patients from Iran and their healthy consanguineous parents. In 61 patients, we identified apparently causative changes in known ID genes. Of these, 44 were homozygous recessive and 17 dominant DNMs. Assuming that the DNM rate is stable, these results suggest that parental consanguinity raises the ID risk about 3.6-fold, and about 4.1 to 4.25-fold for children of first-cousin unions. These results do not rhyme with recent opinions that consanguinity-related health risks are generally small and have been “overstated” in the past. KEYWORDS impact of inherited and de novo mutations, intellectual disability risks, parental consanguinity, parent-patient trios, whole-exome sequencin

    A novel deletion mutation in ASPM gene in an Iranian family with autosomal recessive primary microcephaly

    Get PDF
    How to Cite This Article: Akbarizar E, Ebrahimpour M, Akbari S, Arzhanghi S, Abedini SS, Najmabadi H, Kahrizi K. A Novel Deletion Mutation in ASPM Gene in an Iranian Family with Autosomal Recessive Primary Microcephaly. Iran J Child Neurol.  2013 Spring;7(2):23-30. ObjectiveAutosomal recessive primary microcephaly (MCPH) is a neurodevelopmental and genetically heterogeneous disorder with decreased head circumference due to the abnormality in fetal brain growth. To date, nine loci and nine genes responsible for the situation have been identified. Mutations in the ASPM gene (MCPH5) is the most common cause of MCPH. The ASPM gene with 28 exons is essential for normal mitotic spindle function in embryonic neuroblasts.Materials & MethodsWe have ascertained twenty-two consanguineous families withintellectual disability and different ethnic backgrounds from Iran. Ten out of twenty-two families showed primary microcephaly in clinical examination. We investigated MCPH5 locus using homozygosity mapping by microsatellite marker. ResultSequence analysis of exon 8 revealed a deletion of nucleotide (T) in donor site of splicing site of ASPM in one family. The remaining nine families were not linked to any of the known loci. More investigation will be needed to detect the causative defect in these families.ConlusionWe detected a novel mutation in the donor splicing site of exon 8 of the ASPM gene. This deletion mutation can alter the ASPM transcript leading to functional impairment of the gene product. References1. Pattison L, Crow YJ, Deeble VJ, Jackson AP, Jafri H, Rashid Y, et al. A Fifth Locus for Primary Autosomal Recessive Microcephaly Maps to Chromosome 1q31. Am J Hum Genet 2000;67(6):1578-80.2. Darvish H, Esmaeeli-Nieh S, Monajemi G, Mohseni M, Ghasemi-Firouzabadi S, Abedini S, et al. A clinical and molecular genetic study of 112 Iranian families with primary microcephaly. Journal of Medical Genetics 2010;47(12):823-8.3. Tolmie JL, M M, JB S, D D, JM C. Microcephaly: genetic counselling and antenatal diagnosis after the birth of an affected child. Am JMed Genet 1987;27583-94.4. Cowie V. The genetics and sub-classification of microcephaly. J Ment Defic Res 1960;4:42-7. 5. Woods C. Human microcephaly. Curr Opin Neurobiol 2004;14(1):112-7.6. Kaindl AM PS, Kumar P, Kraemer N, Issa L, Zwirner A, Gerard B, Verloes A MS,et al.Many roads lead to primary autosomal recessive microcephaly. Prog Neurobiol 2010;90:363-83.7. Kumar A BS, Babu M, Markandaya M, Girimaji SC. Genetic analysis of primary microcephaly in Indian families: novel ASPM mutations. Clin Genet 2004;66:341-8.8. Jackson AP, Eastwood H, Bell SM, Adu J, Toomes C, Carr IM, et al. Identification of microcephalin, a protein implicated in determining the size of the human brain. The American Journal of Human Genetics 2002;71(1):136-42.9. Roberts E, Jackson AP, Carradice AC, Deeble VJ, Mannan J, Rashid Y, et al. The second locus for autosomal recessive primary microcephaly (MCPH2) maps to chromosome 19q13. 1-13.2. European journal of human genetics: EJHG  1999;7(7):815.10. Kousar R, Hassan MJ, Khan B, Basit S, Mahmood S, Mir A, et al. Mutations in WDR62 gene in Pakistani families with autosomal recessive primary microcephaly. BMC neurology 2011;11(1):119.11. Evans PD, Vallender EJ, Lahn BT. Molecular evolutionof the brain size regulator genes<i> CDK5RAP2</i>and<i> CENPJ</i>. Gene 2006;375:75-9.12. Nagase T, Nakayama M, Nakajima D, Kikuno R, Ohara O. Prediction of the coding sequences of unidentified human genes. XX. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA research 2001;8(2):85-95. 13. Jamieson CR GC, Abramowicz MJ. Primary autosomal recessive microcephaly: homozygosity mapping of MCPH4 to chromosome 15. Am J Hum Genet 1999;65:1465-9.14. Genin A, Desir J, Lambert N, Biervliet M, Van Der Aa N, Pierquin G, et al. Kinetochore KMN network gene CASC5 mutated in Primary Microcephaly. Human molecular genetics 2012.15. Bond J, Roberts E, Mochida GH, Hampshire DJ, Scott S, Askham JM, et al. ASPM is a major determinant of cerebral cortical size. Nature genetics 2002;32(2):316-20.16. Fish JL, Kosodo Y, Enard W, Pääbo S, Huttner WB. Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proceedings of the National Academy of Sciences 2006;103(27):10438-43.17. Leal G, Roberts E, Silva E, Costa S, Hampshire D, Woods C. A novel locus for autosomal recessive primary microcephaly (MCPH6) maps to 13q12.2. Journal of Medical Genetics 2003;40(7):540-2.18. Kumar A. Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly. The American Journal of Human Genetics 2009;84(2):286-90.19. Hussain MS, Baig SM, Neumann S, Nurnberg G, Farooq M, Ahmad I, et al. Atruncating mutation on CEP135 causes primary microcephaly and disturbed centrosomal function.AMJ,HumGenet 2012;90:871-8.20. Guernsey DL, Jiang H, Hussin J, Arnold M, Bouyakdan K, Perry S, et al. Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4. The American Journal of Human Genetics 2010;87(1):40-51.21. Gul A, Hassan MJ, Mahmood S, Chen W, Rahmani S, Naseer MI, et al. Genetic studies of autosomal recessive primary microcephaly in 33 Pakistani families: novel sequence variants in ASPM gene. Neurogenetics 2006;7(2):105-10.22. Roberts E, Hampshire D, Springell K, Pattison L, Y C, Jafri H, et al. Autosomal recessive primary microcephaly: an analysis of locus heterogeneity and phenotypic variation. J Med Genet 2002;39:718–721.23. Woods CG BJ, Enard W. Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings. Am J Hum Genet 2005 May;76(5):717-28.24. Kouprina N, Pavlicek A, Collins NK, Nakano M, Noskov VN, Ohzeki JI, et al. The microcephaly ASPM gene is expressed in proliferating tissues and encodes for a mitotic spindle protein. Human Molecular Genetics 2005;14(15):2155-65.25. Bond J, Scott S, Hampshire DJ, Springell K, Corry P, Abramowicz MJ, et al. Protein-Truncating Mutations in< i> ASPM</i> Cause Variable Reduction in Brain Size. The American Journal of Human Genetics 2003;73(5):1170-7.26. Pichon B, Vankerckhove S, Bourrouillou G, Duprez L, Abramowicz MJ. A translocation breakpoint disrupts the ASPM gene in a patient with primary microcephaly. European journal of Human Genetics 2004;12(5):419-21.27. Garshasbi.M, Motazacker M, Kahrizi K, Behjati F, Abedini S, Nieh S, et al. SNP array-based homozygosity mapping reveals MCPH1 deletion in family with autosomal recessive mental retardation and mild microcephaly. Hum Genet 2006 Feb;118(6):708-15.28. Jackson A, McHale D, Campbell D, Jafri H, Rashid Y, Mannan J, et al. Primary autosomal recessive microcephaly (MCPH1) maps to chromosome 8p22-pter. Am J Hum Genet 1998 Aug;63(2):541-6.29. Moynihan L, Jackson A, Roberts E, Karbani G, Lewis I, Corry P, et al. A third novel locus for primary autosomal recessive microcephaly maps to chromosome 9q34. Am J Hum Genet 2000 Feb;66(2):724-7.30. Bond J, Roberts E, Springell K, Lizarraga S, Scott S, Higgins J, et al. A centrosomalmechanism involving CDK5RAP2 and CENPJ controls brain size. Nat Genet.2005 Apr;37(4):353-5. Nat Genet 2005 Apr;37(4):353-5.31. Jamieson C, Govaerts C, Abramowicz M, J. Primary autosomal recessive microcephaly: homozygosity mapping of MCPH4 to chromosome 15. Am J Hum Genet. 1999;65:1465-9

    Two Iranian families with a novel mutation in GJB2 causing autosomal dominant nonsyndromic hearing loss

    Full text link
    Mutations in GJB2 , encoding connexin 26 (Cx26), cause both autosomal dominant and autosomal recessive nonsyndromic hearing loss (ARNSHL) at the DFNA3 and DFNB1 loci, respectively. Most of the over 100 described GJB2 mutations cause ARNSHL. Only a minority has been associated with autosomal dominant hearing loss. In this study, we present two families with autosomal dominant nonsyndromic hearing loss caused by a novel mutation in GJB2 (p.Asp46Asn). Both families were ascertained from the same village in northern Iran consistent with a founder effect. This finding implicates the D46N missense mutation in Cx26 as a common cause of deafness in this part of Iran mandating mutation screening of GJB2 for D46N in all persons with hearing loss who originate from this geographic region. © 2011 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/83755/1/33209_ftp.pd

    Mutations in NSUN2 Cause Autosomal- Recessive Intellectual Disability

    Get PDF
    With a prevalence between 1 and 3%, hereditary forms of intellectual disability (ID) are among the most important problems in health care. Particularly, autosomal-recessive forms of the disorder have a very heterogeneous molecular basis, and genes with an increased number of disease-causing mutations are not common. Here, we report on three different mutations (two nonsense mutations, c.679C>T [p.Gln227∗] and c.1114C>T [p.Gln372∗], as well as one splicing mutation, g.6622224A>C [p.Ile179Argfs∗192]) that cause a loss of the tRNA-methyltransferase-encoding NSUN2 main transcript in homozygotes. We identified the mutations by sequencing exons and exon-intron boundaries within the genomic region where the linkage intervals of three independent consanguineous families of Iranian and Kurdish origin overlapped with the previously described MRT5 locus. In order to gain further evidence concerning the effect of a loss of NSUN2 on memory and learning, we constructed a Drosophila model by deleting the NSUN2 ortholog, CG6133, and investigated the mutants by using molecular and behavioral approaches. When the Drosophila melanogaster NSUN2 ortholog was deleted, severe short-term-memory (STM) deficits were observed; STM could be rescued by re-expression of the wild-type protein in the nervous system. The humans homozygous for NSUN2 mutations showed an overlapping phenotype consisting of moderate to severe ID and facial dysmorphism (which includes a long face, characteristic eyebrows, a long nose, and a small chin), suggesting that mutations in this gene might even induce a syndromic form of ID. Moreover, our observations from the Drosophila model point toward an evolutionarily conserved role of RNA methylation in normal cognitive development

    Mutations in LOXHD1, an Evolutionarily Conserved Stereociliary Protein, Disrupt Hair Cell Function in Mice and Cause Progressive Hearing Loss in Humans

    Get PDF
    Hearing loss is the most common form of sensory impairment in humans and is frequently progressive in nature. Here we link a previously uncharacterized gene to hearing impairment in mice and humans. We show that hearing loss in the ethylnitrosourea (ENU)-induced samba mouse line is caused by a mutation in Loxhd1. LOXHD1 consists entirely of PLAT (polycystin/lipoxygenase/α-toxin) domains and is expressed along the membrane of mature hair cell stereocilia. Stereociliary development is unaffected in samba mice, but hair cell function is perturbed and hair cells eventually degenerate. Based on the studies in mice, we screened DNA from human families segregating deafness and identified a mutation in LOXHD1, which causes DFNB77, a progressive form of autosomal-recessive nonsyndromic hearing loss (ARNSHL). LOXHD1, MYO3a, and PJVK are the only human genes to date linked to progressive ARNSHL. These three genes are required for hair cell function, suggesting that age-dependent hair cell failure is a common mechanism for progressive ARNSHL

    Aberrant phase separation and nucleolar dysfunction in rare genetic diseases

    Full text link
    Thousands of genetic variants in protein-coding genes have been linked to disease. However, the functional impact of most variants is unknown as they occur within intrinsically disordered protein regions that have poorly defined functions1-3. Intrinsically disordered regions can mediate phase separation and the formation of biomolecular condensates, such as the nucleolus4,5. This suggests that mutations in disordered proteins may alter condensate properties and function6-8. Here we show that a subset of disease-associated variants in disordered regions alter phase separation, cause mispartitioning into the nucleolus and disrupt nucleolar function. We discover de novo frameshift variants in HMGB1 that cause brachyphalangy, polydactyly and tibial aplasia syndrome, a rare complex malformation syndrome. The frameshifts replace the intrinsically disordered acidic tail of HMGB1 with an arginine-rich basic tail. The mutant tail alters HMGB1 phase separation, enhances its partitioning into the nucleolus and causes nucleolar dysfunction. We built a catalogue of more than 200,000 variants in disordered carboxy-terminal tails and identified more than 600 frameshifts that create arginine-rich basic tails in transcription factors and other proteins. For 12 out of the 13 disease-associated variants tested, the mutation enhanced partitioning into the nucleolus, and several variants altered rRNA biogenesis. These data identify the cause of a rare complex syndrome and suggest that a large number of genetic variants may dysregulate nucleoli and other biomolecular condensates in humans.© 2023. The Author(s)

    BOD1 Is Required for Cognitive Function in Humans and <i>Drosophila</i>

    Get PDF
    Here we report a stop-mutation in the BOD1 (Biorientation Defective 1) gene, which co-segregates with intellectual disability in a large consanguineous family, where individuals that are homozygous for the mutation have no detectable BOD1 mRNA or protein. The BOD1 protein is required for proper chromosome segregation, regulating phosphorylation of PLK1 substrates by modulating Protein Phosphatase 2A (PP2A) activity during mitosis. We report that fibroblast cell lines derived from homozygous BOD1 mutation carriers show aberrant localisation of the cell cycle kinase PLK1 and its phosphatase PP2A at mitotic kinetochores. However, in contrast to the mitotic arrest observed in BOD1-siRNA treated HeLa cells, patient-derived cells progressed through mitosis with no apparent segregation defects but at an accelerated rate compared to controls. The relatively normal cell cycle progression observed in cultured cells is in line with the absence of gross structural brain abnormalities in the affected individuals. Moreover, we found that in normal adult brain tissues BOD1 expression is maintained at considerable levels, in contrast to PLK1 expression, and provide evidence for synaptic localization of Bod1 in murine neurons. These observations suggest that BOD1 plays a cell cycle-independent role in the nervous system. To address this possibility, we established two Drosophila models, where neuron-specific knockdown of BOD1 caused pronounced learning deficits and significant abnormalities in synapse morphology. Together our results reveal novel postmitotic functions of BOD1 as well as pathogenic mechanisms that strongly support a causative role of BOD1 deficiency in the aetiology of intellectual disability. Moreover, by demonstrating its requirement for cognitive function in humans and Drosophila we provide evidence for a conserved role of BOD1 in the development and maintenance of cognitive features
    corecore